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Abstract-The steady-state response of an elastic-plastic structure subjected to quasi-static cyclic
loads is investigated in the hypothesis of material models with dual internal variables and ther­
modynamic potential and for small displacements. The characters of the steady cycle are studied
together with the related governing equations. With the aid of a sensitivity analysis with respect to
the load parameters, a number of known results holding within perfect plasticity are extended to
nonlinear hardening, and in particular certain properties of the structure in a condition of plastic
shakedown are recognized to hold also in the presence of hardening materials. Perspectives for
further developments conclude the paper.

1. INTRODUCTION

According to experimental evidence, a wide class of elastic-plastic and elastic-viscoplastic
materials subjected to either stress-controlled or strain-controlled load cycles exhibit a
steady cyclic behavior independent of the initial state (see e.g. Lemaitre and Chaboche,
1985). This material behavior induces one to conjecture that a structure made of such a
material and subjected to a cyclic load manifests a similar behavior, at least as far as other
nonlinearity sources (e.g. geometrical nonlinearities) remain negligible. Such material-to­
structure extrapolation deserves, however, a direct proof for each material type not only
for justifying it, but also for establishing the precise characters of the structure's stabilized
response, as well as their dependence on the relevant (material, structural and loading)
parameters. For a structure showing such a stabilized behavior under cyclic loading, two
phases can be distinguished: (i) a short term transient response lasting in general a few
cycles, which depends on the initial conditions and exhibits no periodicity features; and (ii)
a long term stabilized (or steady-state) response exhibiting periodicity features independent
of the initial conditions (steady cycle). Since in general the steady-state response phase
covers almost the entire working life of the structure, knowing the steady cycle, possibly
without the necessity of a full step-by-step analysis, represents a paramount research issue,
e.g. for low-cycle fatigue failure criteria applications.

The existence of a steady cycle was proven by Frederick and Armstrong (1966) for
elastic-perfectly plastic and elastic-perfectly viscoplastic materials, showing that the stresses
and the plastic strain rates eventually become periodic with the same period of the loads
(see also Ainsworth, 1977; Gokhfeld and Cherniavsky, 1980; Martin, 1975; Ponter, 1972).
The above results were extended by Mroz (1972) and Ainsworth (1977) to a class ofelastic­
kinematically hardening viscoplastic materials, and by Halphen (1978) to elastic-plastic
and elastic-viscoplastic standard materials with linear hardening.

Generalized standard materials, namely materials with dual internal variables and a
convex thermodynamic potential (Halphen and Nguyen, 1975; Lubliner, 1990), are con­
sidered in the present study. For structures ofsuch materials subjected to cyclic (mechanical
and/or kinematical) loads, a steady cycle will be shown to exist and its basic characters
pointed out. For this purpose the classical infinitesimal displacement theory will be applied
and the material data will be treated as independent of temperature variations. Under
these simplifying hypotheses, the equation set governing the steady-state response will be
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established together with the unique features of the relevant solution. The sensitivity of the
steady cycle to the load parameters will be investigated and a number of results previously
obtained by Polizzotto et al. (1990) and Polizzotto (1993a) for perfect plasticity will be
extended to nonlinear hardening.

The plan of the paper is as follows. Section 2 is devoted to the description of the
material model, Section 3 treats the steady-state response, Section 4 the equation set
governing the steady cycle, Section 5 provides a classification of the steady cycles, and
finally Sections 6 and 7 are devoted to the sensitivity analysis of the steady cycle. Section 8
considers the elastic region and conclusions are drawn in Section 9.

NOTATION-A compact notation is used throughout, with vectors and tensors
denoted by bold face symbols. A scalar product is denoted by a dot for vectors and by a
colon for second order tensors, e.g. f' U = };uj , a : 8 = O'ij8ij' where the index summation rule
holds. The scalar products between vectors (0), second-order (0') and fourth-order (A)
tensors obey the rules: (a'n)i = O'ijnj' (A: a)ij = AijhkO'hb a: A: a = O'ijAijhk(1hk' The symbol
:= denotes equality by definition. Other symbols will be defined where they first appear.

2. THE MATERIAL MODEL

A (generalized standard) elastic-plastic material is considered as described by the
following constitutive equations:

</1(a, I) ~ 0, ,{ ~ 0, ,{</1(a, I) = 0 (1)

•P _ \ o</1(a, I)
8 - A oa '

_ ~ = ,{ o</1(a, I)

°1
(2)

(3)

(4)

Here, (1 is the stress tensor, whereas 8, 8
e and 8P are tensors of total, elastic and plastic

strains, and 8
8 is the thermal strain tensor. A is the compliance fourth-order tensor of linear

elasticity (with its usual symmetry and sign definiteness properties), I and ~ are dual internal
variables (scalars, vectors or tensors, but here treated as tensors) mutually related by a
convex thermodynamic potential, 'P(~), and referred to, respectively, as the stress-like and
strain-like internal variables in the following. </1(a, I) is the yield function, by hypothesis
convex and smooth in the (a, I)-space, also playing the role of plastic potential (associated
plasticity) .

As a consequence of the convexity of </1(a, I), the following inequality holds (see
Halphen and Nguyen, 1975; Halphen, 1979; Polizzotto et al., 1991):

(5)

where the pairs (a, I) and (ilP, ~) are mutually related by eqns (1) and (2), and the stress
pair (a, x) is arbitrary but plastically admissible, i.e. </1(iI, X) ~ O. Inequality (5) can also be
viewed as a consequence of the maximum intrinsic dissipation theorem, that is

DW,~) = max (a: ilP -X:~) S.t. ¢(iI, X) ~ 0,
(i.xl

(6)

where DW, ~) is the intrinsic dissipation/unction and "s.t." stands for "subject to". DW,
~), as given by eqn (6), can be represented as
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(7)

where Dp = tI: BP and Dd = X: ~ denote the plastic and internal dissipations, respectively,
and the non-negativity of D is a consequence of the second thermodynamics principle.

By eqn (3), the internal dissipation rate density can also be written as

(8)

Thus, on integration over the time interval (0, t) from the virgin state (~ = X = 0, '1'(0) = 0)
to a state characterized by the internal variables ~, the internal dissipation work spent to
promote the change of the microstructure state within the unit volume, Wd(t), is

(9)

Making use of eqn (3) and on setting X(~) = a'P/a~, one can write ¢(tI, X) = ¢(tI,
X(~» = <$(tI, ~) such that, by differentiation, one obtains

0<$ aX a¢ 02'1' a¢
a~ = a~: ax = a~a~: ax' (10)

The latter relations, through multiplication by l and by virtue of eqns (1 )-(3), enable one
to rewrite constitutive equations like eqns (1)-(3), but with <$ in place of ¢. Then, since
<$(tI, ~) is convex (and smooth) in the (tI, ~)-space, the inequality

(11)

holds for arbitrary pairs (tI, ~) and (BP, X) corresponding to each other through the consti­
tutive equations and for arbitrary plastically admissible pairs (a, ~), i.e. <$(a, ~) ~ O.
Summing eqns (5) and (II) then yields the inequality

(tI-a): ilP-! (X-X): ~-! (~-~):X~ 0,

which, rewritten in the form

(12)

(13)

is substantially equivalent to the one given by Halphen and Nguyen (1975). Inequalities
(12) and (13) hold for any set (tI, X, ~, ilP, X, ~) complying with the constitutive equations
(1)-(3) and for any plastically admissible set (a, X, ~), i.e. ¢(ii, X(~» ~ O. For a convex
smooth yield function ¢, the equality sign holds in eqns (12) and (13) if, and only if, either
ilP = 0 and ~ = X= 0 (in which case tI, Xand ~ may be different from a, Xand~, respectively),
or tI = ii, X = X, ~ = ~ (in which case ilP, ~ and Xmay be different from zero).

Following classical reasoning (see e.g. Martin, 1975), eqn (13) can be generalized by
considering two states of the material and writing

I d
(tI' -tl"): (BP' -ilP

") - 2 dt [(X' -X"): (f -~")] ~ 0, (14)

where the primed and doubly primed quantities describe the two material states, respec­
tively, both complying with eqns (1)-(3). It is worth noting that the equality sign in eqn
(14) holds if, and only if, either ilP' = ilP" = 0, :' = ~" = 0 and X' = X" = 0 (in which case



956 C. POLIZZOTTO

a', X' and f may be different from a", X" and ~", respectively), or sP' = sP", ~' = ~", i' = i"
and are not vanishing (in which case a' = a", ~' = ~", X' = X").

The following specializations of the above material model are of interest for the
purposes of the present paper (see Martin, 1975; Lemaitre and Chaboche, 1985; Lubliner,
1990).

(a) Isotropic hardening material. There is a single pair of internal scalar variables, say
~o and XO, and the yield function has the form ¢ == f(a)-k-xo(~o), where k is a positive
constant and XO = d'P(~o)jd~o. Since ~o = Jc, the internal variable ~o increases mono­
tonically; since dXojd~o > 0, the yield surface expands homothetically during any plastic
straining process.

(b) Kinematically hardening material. The yield function is ofthe form ¢ == f(a-x)-k
such that ~ = sP, whereas the potential 'P(~) is in general chosen as a positive definite
quadratic function. The yield surface translates during any plastic straining process while
retaining its size and shape.

(c) Hardening material with bounding surface. The material hardens with an assigned
rule as long as the yield surface is inside the bounding surface F(a) = 0, and behaves as a
perfectly plastic material if the yield surface touches the bounding surface (Mr6z, 1969;
Krieg, 1975; Dafalias and Popov, 1975). A material model with hardening saturation
capability belongs to the class of materials with bounding surface. Such a material hardens
with a specific law as long as the internal dissipation work is less than some limit, e.g.
'P(~) < y. At saturation, i.e. for 'P(~) = y, provided that no unloading occurs, ~ can change
but satisfies 'P(~) = y, while the yield surface envelopes a surface F(a) = O.

3. STEADY-STATE RESPONSE TO CYCLIC LOADS

A continuous body with an elastic-plastic material as described in the previous section
is considered here. The undeformed body, referred to a Cartesian orthogonal coordinate
system x = (Xl> X2, X3), occupies a region Vofthe three-dimensional Euclidean space and
is restrained upon the part au v of its boundary surface av. It is loaded by external
actions as body forces in V, tractions on atv = aVjau V, thermal strains in V and imposed
displacements on au v. All these actions vary in a quasi-static manner with time t ;:,: 0 and
are periodic with the period At. These same actions are in some way represented by the
corresponding elastic response of the body, i.e. the stresses and displacements which arise
in the body being treated as indefinitely elastic, and are henceforth denoted as (. )E. Obviously
these stresses and displacements are periodic like the loads. The actual response of the body
to the given loads and initial conditions (i.e. initial plastic strains and consequent stresses)
is denoted by symbols such as a, Il, U, etc.

First, an intermediate result, useful for the subsequent developments, is derived. For
this purpose, a hypothetical structural situation is considered in which the body suffers two
distinct state evolutions, say a', Il', ... and a", Il", ... such that the difference fields
/1a = a' -a", etc., satisfy the identity

(15)

where J is some time interval, Le. J : = {t: to :s; t :s; t I}' with to ;:,: O. Considering what has
been stated with regard to eqn (14) taken as an equality, eqn (15) implies the following:

/1sP = 0, /1i = /1~ = 0 in VxJ;
/1a = 0, /1X = /1~ = 0 at points x E Vp and times t = tp(x) E Jp, where Vpand Jpcollect

points and times where plastic yielding occurs;
/1a, /1X and /1~ may not vanish in Vp and for times tEJ. := JjJp as well as in V. :=

Vj Vp and for all t E J.

Some additional consequences to eqn (15) can also be derived. First, /1X and /1~ being time­
independent in V x J, it follows that /1X = /1~ = 0 in Vp for all t E J (because these fields
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vanish there at certain times). Second, the residual stress rate difference field, AiJR
, must

vanish in V and for all tEJ like ti8P (to which it is the elastic response) and thus AflR is
time-independent in Vx J. Therefore, it can be stated that, upon validity of eqn (15), the
following evolution uniqueness requisite is satisfied.

EVOLUTION UNIQUENESS REQUISITE-For an elastic-plastic structure for which
two different state evolutions and some time interval J may be envisaged such as to satisfy
eqn (15), the following properties hold true:

(i) The plastic strain rate difference field vanishes identically in V, i.e. tiiP = 0 in V
for all tEJ.

(ii) The internal variable difference fields, tiX and A~, are time-independent in V x J
and in particular they identically vanish in the region Vp of plastic yielding, i.e. AX = 0,
A~ = 0 in Vp for all tEl.

(iii) The residual stress difference field, AflR
, is time-independent in Vx J.

(iv) The stress difference field, Aa = AaE+AaR
, vanishes at points XE Vpand at times

t = tp(x) EJp.
In the special case in which the two state evolutions occur under the same load history,

such that tiaE == 0, we have Aa = AaR identically, properties (i) and (ii) above remain
unaltered and (iii) and (iv) unify into the following point (v).

(v) The stress difference fields Aa and AaR identify with each other, are time-inde­
pendent in V x J and in particular they vanish in Vp x J.

With the above result in mind, let the body introduced at the beginning of this section
be considered again, together with its actual response. On denoting by A( 0) the difference
of values of a variable (0) at the instants t and t+At, for instance Aa(x, t) = a(x,
t+tit)-a(x, t), by virtue ofeqns (1)-(4), which are continuously satisfied at all t ~ 0 and
all XE V, eqn (14) applies and gives

/ ._ A .A·p I d(A .A.l'\ O' II 0. - ua. 0.6 - 2: dt ux· U'tJ ~ m V, a t ~ .

From the equality

written at times t and t+tit, in view of the periodicity of 6
8
(X, t), it follows that

AiP = Ai-A:AiJ in V

(16)

(17)

(18)

for all t ~ 0 and then, on substitution of the latter equation into eqn (16) and with
subsequent integration over the volume V, one has

The first integral on the r.h.s. of eqn (19) vanishes because Aa, the difference between
stresses in equilibrium with equal loads, is a self-stress field, whereas tii, the difference
between two strain rate fields compatible with the same displacement rates on Ou V, is itself
compatible with zero displacement rates on Ou V. Thus, eqn (19), by virtue of (16), can be
written as

SAS 31:7-E

i dL
- /dV=-~O,

v dt
(20)
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where L is the positive definite functional:

(21)

It thus results that, during the loading process, the state function L decreases mono­
tonically with time. Since L cannot take negative values, it follows that L must stop
decreasing at a certain time tso after which dL/dt = 0 at all times, hence I = 0 in V and for
all t ~ ts ' This means that, for t ~ tso eqn (16) is satisfied as an equality and that the body
experiences, under the same load history, two state evolutions satisfying eqn (15), with
to = ts and t( = +00. Therefore, the evolution uniqueness requisite applies here, with its
properties (i), (ii) and (v). Additionally, since for the specific features of the problem at
hand we have AX = A~ = 0, AsP = 0 in the region Ve = V/Vp where no plastic yielding
occurs at times t ~ tso it follows that A(I vanishes in V for all t ~ ts ' Therefore, one can
state the following proposition.

Proposition 1. In a structure with a generalized standard elastic-plastic material and
subjected to cyclic loads, there exists a stabilization time after which the (stabilized) response
is characterized by stresses (I, plastic strain rates ilP and internal variables X and ~, all
periodic with the same period of the loads.

The above result, derived under the hypothesis of smooth yield function, can also be
considered valid for nonsmooth yield functions on the basis of arguments as in Martin
(1975) for perfect plasticity.

Proposition 1 implies that, for loads (PO, P) under which Vp =I- 0, the body's stress
and hardening states at any time t ~ ts are recovered after a complete cycle of time length
At, but that this is not the case for the body's plastic strain state, as in fact the two plastic
strain states generally differ from each other by a compatible strain field AsP, except when
AsP == 0 (plastic shakedown).

The long term (stabilized) response is, to some degree, dependent on the initial
conditions. It is of interest to establish the essential characteristics of the long term response
that are independent of the initial conditions. A reasoning path similar to that preceding
Proposition 1 is useful for this purpose.

Let primes and double primes label two different responses of the body to the same
loads, but with different initial conditions, and let the symbol A(') denote the difference
between state variable values in the two responses at the same time, for instance A(I(x, t)
= (I'(x, t)-(l"(x, t). Obviously, whatever the initial conditions, eqn (16) still holds, but
with the difference fields having the new established meanings. Since eqns (18) and (19) can
again be employed, it follows that the same formal procedure from eqns (16)-(21) applies,
with the consequence that there exists some ts ~ 0 after which I = O. That is, the body
experiences, under the same load history, two state evolutions for which eqn (15) is satisfied
with to = ts and t l = + 00, and thus the evolution uniqueness requisite again applies with
its properties (i), (ii) and (v). Since it can be excluded that AsP may constitute a compatible
strain field in V, one can state that AsP = 0 in Vpfor t ~ ts and that in Ve some nonvanishing
AsP, AX, A~ may exist as a consequence of different plastic straining processes and different
initial conditions. Therefore, for t ~ tso it is found that ilPI = ilP", i' = iff, ~' = ~" in the
whole V and (I' = (I", SPI = sP", X' = X", ~' =~" in Vp (but not necessarily in Ve ). In
conclusion, it is possible to state the following proposition.

Proposition 2. In a structure with a generalized standard elastic-plastic material
subjected to cyclic loads (but unspecified initial conditions), the long term response exhibits
uniqueness for the plastic strain rates ilP and the internal variable rates i, ~ in the whole V,
as well as for the stresses (I, plastic strains eP and internal variables X, ~ within the region
Vp of plastic yielding, whereas in the elastic region Ve = V/Vp, some time-independent sP,
X, ~ may exist with values dependent on the initial conditions and on the transient straining
process as well.

The long term stabilized response to given cyclic loads, but with unspecified initial
conditions, is usually referred to as the steady-state response, or the steady-cycle response,
or simply the steady cycle.
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4. EQUATIONS GOVERNING THE STEADY CYCLE

The steady cycle ofa structure for given cyclic loads can be determined directly, without
taking into consideration the transient response phase. This goal can be achieved by solving
an ad hoc equation set worth being specified. In the light of the results of Section 3, these
equations read:

(22)

4>(a, X) ~ 0, ), ~ 0, ),4>(a, X) = 0 in V x (0, L\t)

CTaR= 0 in VX (O,L\t), aR'n = 0 on OtVX (0,L\t)

CUR = A:aR+gP in Vx (O,L\t), iIR = 0 on ouVx (O,L\t)

(M
L\~ := Jo ~ dt = 0 in V.

(23)

(24)

(25a)

(25b)

(26)

(27)

Here, aE= aE(x, t), 0 ~ t ~ L\t, is the elastic stress response (assumed known) and the stress
field a is expressed as the superposition of aE with the residual stress field aR, the latter
being associated with the residual displacement field uR

; furthermore n is the unit external
normal to oV, C denotes the compatibility differential operator and C T its adjoint, i.e.

C(') = ![grad (')+grad (·f], C T
(:) = div(:).

Thus, eqn (25a) qualifies aR as a self-stress field, whereas eqn (25b) states that aR and iIR

are stress rates and displacement rates elastically associated with gP. Additionally, eqn (26)
states that the ratchet strains L\e.P (i.e. the net plastic strains accumulated in the complete
cycle) are compatible with the displacements v vanishing on Ou V, such that the residual
stresses aRexisting in Vat t = 0 are reconstituted at t = L\t; analogously, eqn (27) requires
that the ratchet strain-like internal variables, L\~, vanish everywhere in V, such that the
hardening state at t = 0 is reconstituted at t = L\t in the whole V. The above properties, as
summarized by eqns (25)-(27), will be referred to by saying that the strain rate history pair
(gP, ~) within (0, L\t) constitutes a Plastic Accumulation Mechanism (PAM) characterized
by the ratchet strains L\8Pwith their related displacements v = L\uR (see Polizzotto et al.,
1991).

Equations (22)-(27) resemble an evolutive problem ofelastoplasticity in the framework
of internal variable formulations, but with the customary initial conditions replaced by
suitable time-integral conditions, i.e. eqns (26) and (27). The above equation set is generally
very difficult to solve and simplified analysis methods are needed in practice.

On assigning to a variable (.) values at times T = t+nL\t (n = 1,2, ...), with the rule
(.) It+ndl = (.) I, for all t E (0, L\t), any state or evolution variable pertaining to the/a solution
to eqns (22)-(27) can be envisaged as a function of T ~ O. It can be easily shown that the
variables a, sP and X as functions of T are periodic with period L\t, just like ~, whose
periodicity is directly stated by (27). In fact, the periodity ofaR(hence ofa = aE+a~ stems
from the fact that the plastic strains accumulated from t = 0 to t = L\t are compatible and
thus the corresponding stresses, aR, at t = 0 coincide with those at t = L\t. The periodicity
of X is a direct consequence of the periodicity of ~ through the second eqn (22). Finally,
the periodicity of gP stems from the periodicity ofa, Xand), through the first eqn (24), with
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l uniquely determined in terms of a, a, X and ~. Namely, from the plastic consistency
condition <P = 0, one obtains (Martin, 1975; Lubliner, 1990) :

(28)

where H = H(a, ~) is the hardening modulus, i.e.

(29)

and <.) is the Macauley operator, namely <x) = x for x ~ 0 and <x) = 0 for x < O. By
eqn (25b), OR turns out to be periodic too.

It can now be proved that the solution to eqns (22)-(27) is unique for all, except that
aR

, Xand ~ are uniquely determined only in the region Vp £; V (if any) where plastic yielding
takes place. For this purpose, let there exist, by absurdity, two solutions respectively labeled
by primes and double primes, and let the symbol L\(') denote the difference of values of the
typical variable (.) in the two solutions, but at the same time, e.g. L\a(x, t) = a'(x, t) -a"(x,
t). Applying eqn (14) enables one to write an inequality formally equal to eqn (16). Since
an equality formally identical to eqn (18) holds, it follows that eqns (19) and (20) still hold
true, namely

r dLJ/dV= -dt~OalltE(O,M), (30)

where L is given by eqn (21), but with the difference fields having the new meanings. Since
the latter fields take equal values at t = 0 and t = M, respectively, integration of eqn (30)
over (0, L\t) then yields

L<\I f/ dV = L(O) -L(M) = 0 (31)

and, as a consequence, I must vanish identically in VX (0, M). This means that the body
suffers, under a single load history, two state evolutions such as to satisfy eqn (15) with
to = 0 and t 1 = L\t, and thus the evolution uniqueness requisite applies to the present case
with its properties (i), (ii) and (v). Thus, one can state that: (i) L\eP, L\X and L\~ vanish in
Vx (0, M), then eP, Xand ~ are unique in Vx (0, M) and (ii) L\a, L\X and L\~ vanish in
Vp x (0, M), then a, X and ~ are unique in Vp x (0, M). The statement is so proved.
Obviously, if Vp is empty, then eP, Xand ~ vanish identically, whereas aR

, Xand ~ turn out
to be indetermined time-independent fields in V (elastic shakedown).

The solution to eqns (22)-(27) provides the steady-cycle response of Section 3. In order
to prove that, let primed symbols be used for the solution to eqns (22)-(27) and doubly
primed symbols for the steady-state response. A piece of the steady-state response of time
length M is extracted and a local time t, 0 ~ t ~ M, is introduced such that the primed and
doubly primed variables are all functions of t and are related with the same load at every
tE (0, L\t). Since both solutions satisfy the constitutive equations, eqn (14) applies, enabling
one to write an inequality formally identical to eqn (16). Since eqn (18) still holds for all
tE (0, L\t), the reasoning from eqn (16) to eqn (21) can be followed here. Then, considering
that an equality like eqn (31) can be shown to hold, with I and L as specified by eqns (16)
and (21), one has that I = 0 identically. Again, the body experiences, under the same load
history, two state evolutions satisfying eqn (15) with to = 0 and t 1 = M, and the evolution
uniqueness requisite holds true with its properties (i), (ii) and (v). Thus, one can state that,
at every tE (0, L\t), eP' = eP", X' = X" and~' = ~"everywhere in V and, furthermore, a' = a",
X' = X",~' = ~"in Vp (where plastic yielding takes place), but a', X' and~' may not coincide



Elastic-plastic structures subjected to cyclic loads 961

with (I", X" and:" in the region Ve = V/Vp (where (I', X' and f are not uniquely determined).
This proves the above statement, such that the solution to eqns (22)-(27) can be referred
to as the steady cycle. It also follows from the above that the steady cycle is independent
of the load cycle origin.

The above circumstances suggest one to consider the residual stress tensor (lR as the
superposition of two stress tensors, namely

(lR(X, t) = p(x) +1'(x, t), 0 ~ t ~ At, (32)

where p(x) denotes [according to a terminology introduced by Polizzotto (1993a, c)] the
post-transient residual stresses, i.e. the residual stresses associated with the plastic strains
sf(x) and the internal variables Xs(x) and :s(x) at the stabilization time, whereas 1'denotes
the pure cyclic residual stresses, i.e. the residual stresses associated with the additional
plastic strains arising in the steady cycle. This implies that, at some t* E (0, At), (lR(X,

t*) = p(x) and 1'(x, t*) = 0 in V. However, it is always possible, perhaps with the aid of a
suitable choice of the load cycle origin and of the initial conditions, to take t* = 0, i.e. to
make the stabilization time occur at the beginning of some subsequent cycle. With this
choice,

1'(x, t) = f: i'(x, 1) df, (33)

and l' turns out to be uniquely determined in Vx (0, At), just like i' = itR
, whereas p is

uniquely determined only within Vp , just like (lR. Finally, it is worth noting that the steady
cycle is characterized by a vanishing cycle internal dissipation work density, i.e. Wd =
['P(:)]~t = O. Thus, the cycle plastic dissipation work density, wp = J~tDpdt, coincides with
the cycle intrinsic dissipation work density, and hence is totally externally dispersed.

5. CATEGORIZATION OF THE STEADY CYCLE

The steady cycle in a given body, governed byeqns (22)-(27), can be categorized on
the basis of the related PAM (ilP, ~), in perfect agreement with the case ofa perfectly plastic
material (Polizzotto, 1993a). The following three categories of steady cycles can thus be
distinguished.

(I) Elastic shakedown. The PAM is a trivial one, namely i P and ~ vanish identically
in VX (0, At). This means that the body responds to the loads in an elastic manner after
the stabilization time and that no further plastic deformations are produced in addition to
those occurring in the transient response phase (the latter being absent in the case of a fully
elastic deformation process). Static and kinematic (elastic) shakedown theorems have
already been established to discriminate shakedown from nonshakedown loads, and
methods are available for specifying the shakedown limit loads (Halphen, 1979; Maier,
1987; Maier and Novati, 1987; Polizzotto et al., 1991). For an isotropic hardening material,
elastic shakedown is the only form of steady cycle allowed, as for such material one has
A~o = AA. = 0 in V, hence A. = ~o = 0 and iP = 0 identically in Vx (0, At), whatever the
cyclic load. In the case of elastic shakedown, eqns (22)-(27) reduce drastically because A
vanishes identically, together with i1R

, OR and i, such that (lR and 1. tum out to be time­
independent, and the only meaningful equation is the yield condition 4>«(1, X) < 0 in Vx (0,
at).

(2) Plastic shakedown. The PAM is characterized by identically vanishing ratchet
plastic strains, i.e. AsP = 0 in V, such that the plastic strains sP in the steady cycle are
periodic. These strains generally remain small, but their alternating character produces low­
cycle fatigue (alternating plasticity collapse). For kinematically hardening materials, plastic
shakedown occurs under any cyclic load above the elastic shakedown limit load, as, with
such a material, a, = asP = 0 in V whatever the given load.
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Fig. 1. Two-bar unsymmetric one-degree-of-freedom system with bar I subjected to temperature
variation cycles and bar 2 taken at constant temperature. (a) Structural and geometrical sketch.
(b) Temperature variation histories. (c) Stress-strain diagram (elastic-kinematically hardening­
perfectly plastic material). (d)-(f) Bree diagrams for different values of the parameter S (ur = max

thermoelastic stress).

d)

(3) Ratchetting. The PAM is characterized by nonvanishing ratchet plastic strains in
at least a portion of the body, i.e. <:laP '1= O. Thus, the plastic strains increase by a constant
amount at every cycle and soon become too large (incremental collapse). Ratchetting can
occur with a perfectly plastic material, as well as with a hardening material with a bounding
surface (or with hardening saturation).

The type of steady cycle that is actually established under a given load depends, for a
given structure, on the load parameters. In the space of these parameters, the steady cycle
can be mapped into a convex domain B = Bsu BFu BR , where Bs, BF and BR are the
subdomains (or zones) of elastic shakedown (and purely elastic behavior as well), plastic
shakedown and ratchetting, respectively. B is known as the interaction diagram (or gener­
alized Bree diagram) in the related literature (see Ponter, 1983; Gokhfeld and Cherniavsky,
1980 ; Polizzotto, 1993a) (Fig. Ia-f). Methods for specifying the elastic shakedown bound­
ary are already available (see Maier, 1987; Maier and Novati, 1987; Polizzotto et al., 1991).
Methods like those proposed by Ponter (1983), Ponter and Karadeniz (1985a, b), and
Ponter et al. (1990) for cyclically hardening materials and thermal loading, and by Polizzotto
(1993b) for perfect plasticity and general cyclic loading may be generalized to the present
nonlinear hardening context, but this task is open to future researcb work.

For design purposes, criteria for predicting the zone to which the steady cycle belongs
are of primary importance. The elastic shakedown theorems are available for applications
to the Bs zone; the plastic shakedown theorems given by Polizzotto (1993b) for perfect
plasticity may be extended to nonlinear hardening, but this will be the object of a future
paper.

6. LOAD SENSITIVITY OF THE STEADY CYCLE

This section is devoted to investigating the sensitivity of the steady cycle to changes in
the load parameters. Contributions to this topic were given by Ainsworth et al. (1980) with
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reference to the influence of the steady load on the·elastic shakedown boundary. Here, a
more general viewpoint is taken, similar to analogous studies for perfect plasticity (Poliz­
zotto et al., 1990; Polizzotto, 1993a). For this purpose, let the given load be synthetically
represented as

(34)

where pc is a specified periodic load, fJ a scalar parameter and pO a time-independent (or
permanent) load. pO can in principle be an arbitrary permanent load below the ultimate
plastic failure values, but on occasion it may belong to a narrower set. Obviously, the elastic
response to the load of eqn (34) can be represented in an analogous way, i.e.

(35)

where aC(x, t) and aO(x) are the elastic stress responses to PC(t) and po, respectively.
By integration ofeqn (7) over V x (0, At) and considering that no contribution is given

by the internal dissipation term, one can write the equality

(36)

i.e. the total intrinsic dissipation work, W, coincides with the total plastic work, Wp , the
latter being expressed, by virtue of eqns (22) and (32), as

Wp= 1'\t LDpdVdt= LM L(pac+aO+ p+'C):ePdVdt=p1.11 Lac:ePdVdt

+ L aO:AsPdV+ Lp:AsPdV+1.11 L 'C:ePdVdt. (37)

The third integral on the r.h.s. of eqn (37) vanishes by the virtual work principle (p is self­
equilibrated with zero tractions on at V, AsP is compatible with zero displacements on au V),
whereas the last integral can be transformed as

(t.t ( I ( IAt
= Jo J/:eRdVdt-2Jv't:A:'CdVo =0, (38)

i.e. it vanishes as a consequence of the vanishing of the last two integral terms ofeqn (38)­
namely, the one due to the virtual work principle and the other due to the periodicity of 'C.

Thus, the expression of Wp in eqn (37) simplifies and eqn (36) can be written as

(39)

where

AO.= Lao: AsP dV (primary accumulation parameter) (40a)

Ac .= 1.11 Lac:eP dV dt (secondary net accumulation parameter). (40b)
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Notice that A°= 0 for any load pO representing a kinematical load (i.e. thermal load and/or
imposed displacements upon au V), as well as for pO, being a mechanical load in the case
of plastic shakedown.

With these premises in mind, let (jpo and (j[3 be arbitrary small load increments and
let (po+(jpo, [3+(j[3) be loads in a small neighborhood of a given load (PO, [3). On the
assumptions that no instability phenomena are present and the steady cycle varies with
continuity on changing the load, the varied steady cycle can be expressed as tr+(jtr, u+(ju,
etc., where (jtr, (ju, etc. denote the variable increments corresponding to the load increments
(jpo, (j[3.

As a consequence of eqn (14), one can write

(41)

to be satisfied by the relevant increments. On remarking that the integral

(42)

i.e. it vanishes due to the periodicity of: and (j:, and in consideration that

(43)

one obtains from eqn (41), after integration over Vx (0, dt):

where (jAc and (j2Ao are variations of AC and AO, namely

(45)

As the last two integrals on the r.h.s. of eqn (44) vanish by the virtual work principle «(jp
is a self-stress field, d(jaP = (jdaP is a compatible field) and, respectively, by eqn (38) written
for (j't' and (jaP, then eqn (44) simplifies to

(46)

an extension and generalization to the present context of an analogous inequality given for
perfect plasticity in Polizzotto et al. (1990) and Polizzotto (1993a), where permanent loads
of only mechanical type were considered.

The above inequality interprets the sensitivity of the steady cycle to small load
increments by stating that in any small change of the load parameters from (PO, [3) to
(po+(jpo, [3+ (j[3), the consequent (small) change in the steady cycle is characterized by a
non-negative second variation of the total plastic (and also intrinsic) dissipation work in
the cycle.

For loads (PO, [3) EBs, the steady cycle is always characterized by an identically
vanishing PAM W, ~), such that W = 0 and (j2W = 0 everywhere in Bs and for arbitrary
small increments. Thus, one can say that in Bs the steady cycle is fully insensitive to small
load increments.
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In analogy with the perfect plasticity case, eqn (46) can also be interpreted as a stability
principle for the steady cycle (see Polizzotto et al., 1990; Polizzotto, 1993a), but this point
is not pursued here for simplicity.

7. INSENSITIVITY TO LOAD INCREMENTS

Let a load (pO, fJ) ¢ Bs be considered together with the corresponding steady cycle and
let correspondingly, by hypothesis, t5 2W = 0 for a certain class of load increments (t5po,
t5fJ). As a consequence of this hypothesis, eqn (41) is satisfied as an identity, i.e.

(47)

The latter identity is formally coincident with eqn (15), but the incremental fields t5( 0)
replace the difference fields A(o) and to = 0 and tl = At. Thus, the evolution uniqueness
requisite applies here in its general format, with its properties (i), (ii) and (iii), and enables
one to state that t5iJP = 0, t5i = 0, t5~ = 0 in V x (0, At), and that t5X and (j~ are time­
independent fields of V, vanishing in Vp- Also, since (jaR := M := 0, hence (j't' := 0, eqn (43)
now reads

(48)

The set (0, At)p (collecting the times at which plastic yielding occurs) may contain a
single instant only in the case of elastic shakedown or even of plastic collapse, but both
circumstances are to be excluded here. Therefore, eqn (48) can be satisfied if, and only if,
(jfJ = 0 such that it reduces to

(49)

It transpires from eqn (49) that the region Vp cannot contain the application points of the
mechanical part of (jpo since (jao must constitute a self-stress field in Vp•

Summarizing the above results, the following can be stated:

(a) At a load point (pO, fJHBs, the only load increments such that (j2W=0 are
increments of the permanent load with (jfJ = O.

(b) The steady cycle pertaining to (pO, fJ) is insensitive to increments of the permanent
load for which (j2W = 0 (if any), in the sense that, upon such a load increment, the related
PAM (BP, ~) remains unaltered, as do the state variables a, Xand ~ in Vpx (0, At), and also
the region Vp of plastic yielding.

(c) The load increment (jpo for which (j2W = 0 at (PO, fJ), if any, must have the
application points of its mechanical part within the elastic region Ve = V/Vp , where a stress
change (ja arises such as to equilibrate (jpo.

Another consequence of eqn (47) can be derived from the vanishing integral

(50)

where ePpertains to the steady cycle of the load (pO, fJ). The considered integral vanishes
because iJP := 0 in Ve (where (ja 1= 0), and (ja := 0 in Vp (where iJP 1= 0). Since the last integral
on the r.h.s. of eqn (50) is zero «(jp is self-equilibrated, AsP is compatible), eqn (50) reduces
to
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Iv 6ao :A,l dV = O. (51)

As the latter equation must hold for arbitrary choices of opo, and hence of oao in V, it
follows that AsP = 0 in V, Le. plastic shakedown occurs under the load (PO, (3). Additionally,
since the plastic strain rate history remains unaltered on application of opo, plastic shake­
down also occurs under the loads (po+opo, (3) with arbitrary small opo (but the mechanical
part of opo with application points upon Ve ).

Conversely, let (PO, (3)EBF and let (po+opo, (3)EBF for arbitrary small opo and (3
taken as constant. Since, then, AsP = 0 and AosP = 0 in V, from eqns (40) and (46) it follows
that

(52)

such that eqn (47) is met and consequently properties (b) and (c) above hold. In conclusion,
the following proposition can be stated.

Proposition 3. In a body of generalized standard elastic-plastic material subjected to
cyclic loads (PO, (3), if this load causes plastic shakedown, the related steady cycle is
insensitive to (small) increments opo of the permanent load, i.e. on application of the
increment opo the PAM (iP, ~) remains unaltered, together with the stresses a and the
internal variables X and , within the region Vp where alternating plastic strains take
place, and furthermore this region Vp (which cannot include the application points of the
mechanical part of oPO) also remains fixed.

The above reasoning changes somewhat in the case where (PO, (3) EaBF because then
opo cannot be arbitrary. This point can be approached with arguments as in Polizzotto et
al. (1990), but this is not pursued here for brevity.

The above proposition includes a particular result ofMroz (1972) for a pO representing
an imposed displacement upon au v.

As a consequence of the above results, it can also be stated that the steady cycle of a
load (pO, (3) E BFis sensitive only to increments 0(3 of the time variable load, and that the
steady cycle of a load within the ratchetting zone BR is fully sensitive to load changes.

8. THE ELASTIC REGION v.

The elastic region Ve is, by definition, that part of V where no plastic yielding occurs
after the stabilization time, and thus where the plastic strains sP and the internal variables
X and ~, if not vanishing, are time-independent (see Proposition 2). The following prop­
osition can be stated.

Proposition 4. In the steady cycle of an elastic-plastic structure, an elastic region Ve

can exist if, and only if, the structure is in a condition ofshakedown, either plastic shakedown
(in which case Ve C V) or elastic shakedown (in which case Ve = V).

This statement was proved for perfect plasticity by Polizzotto (1993a) and also holds
good in the present nonlinear hardening case. In order to prove this, it is obviously sufficient
to consider only loads above the elastic shakedown limit load.

Let a load (pO, (3) rf. Bs be considered together with the related steady cycle described
by the state variables a, s, U .••• The assumption is made that there exists a nonempty
elastic region Ve C V where no plastic yielding occurs in the steady cycle. Equations (22)­
(27) and (32) are satisfied and in particular the plasticity conditions (23) read

4>(a, X) ~ 0, '" ~ 0, "'4>(a, X) ~°in Vp x (0, At)

4>(a, X) < 0, '" = °in Ve x (0, At).

(53a)

(53b)

Furthermore, let an additional permanent load opo be applied upon V (but its mechanical
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part only upon Ve ) and let, correspondingly, the time-independent stress field {;(1 = b(1°+bp
and the time-independent internal variable field b1 be introduced. b(1° is, by definition, the
elastic stress response of V to {;pO, and (jp is some time-independent self-stress field in V
By hypothesis, (jpo is sufficiently small and (jp, (j1 so chosen such as to satisfy the following
conditions:

t/J«(1+b(1,1+(j1) < 0 in Ve x (0, At).

(54a)

(54b)

With these conditions satisfied, it is easily recognized that eqns (22)-(27) and (32) are still
satisfied with the same rate variables ~, sP, ~, ilR, iJR and with the state variables substituted
with new ones (denoted with asterisks), say (1*, p*, 1*, ~*, defined as

(55a)

(55b)

but with the stress -r(x, t) left unchanged. The new equation set so restated provides the
steady cycle pertaining to the load (pO +bpo, P). Taking consideration of the uniqueness
properties of the solution to the above equation set, it results that the steady cycles of (pO,
p) and (po+bpo, p) are characterized by the same rate variable histories, as well as by the
same stress (1 and internal variables 1 and ~ in Vp' As this fact remains true with bpo tending
to vanish in an arbitrary way, it can be stated that the steady cycle of (PO, p) manifests
insensitivity to increments of the permanent load. This is sufficient to assert that, as a
consequence, (j2W = 0 for arbitrary small (jpo and that plastic shakedown thus occurs
under the load (pO, P), with Vp being the region where alternating plastic strains occur. So
the proof is complete.

Another property of the steady cycle is expressed by the following proposition.
Proposition 5. In a structure which is in a condition of plastic shakedown, its elastic

part Ve finds itself in a condition of (partial) elastic shakedown.
For perfect plasticity, this property was given by Ponter (l983) without proof and

subsequently by Polizzotto (1989, I993a) ; see also Mroz (l972). In order to prove that
Proposition 5 also holds in the present nonlinear hardening case, one has to remember that,
in the steady cycle, the yield condition is not attained in V" i.e.

<!>{(1,1) < 0 in Ve x (0, .&t),

where the stress (1 is represented as

a = (1E{X, t) + p{x) +-r(x, t)

(56)

(57)

and the internal variable 1 is time-independent within Ve • Since both p and 1 are not
uniquely determined within V" they can be cast as

p = p{x)+r{x), 1 = h{x) in V" (58)

where p{x) is a suitable continuation within Ve of the uniquely determined field p in Vp ,

r{x) is a self-stress field in Ve and h{x) is some time-independent stress-like internal variable
in Ve• With this choice, the stress (1 can be written as

where

a = &E'{x, t) +r{x) in Ve x (O, At),

aE(x, t) = aE(x, t) + p(x) +-r(x, t) in Ve x (0, .&t).

(59)

(60)
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a) b)

Fig. 2. Elastic-plastic solid in a state ofplastic shakedown. (a) Elastic (V.) and alternating plasticity
(Vp ) regions. (b) Isolated body y. after removal of Vp , subjected to additional mechanical loads

(IX T) to be equilibrated by the stresses t.

However, the latter stresses iJE can be interpreted as the elastic stress response of the body
Ve-eonsidered isolated after the removal of Vp-to external actions as in fact (Fig. 2a, b):

tlE(x, t) is the elastic stress response of V. to the loads directly applied upon it and to
the tractions tf.) = tiE. v at points of the interface r between Ve and Vp , v being the
unit normal to r (external with respect to Ve);

p(x) can always be considered as the elastic stress response of Ve to the tractions
t~? = p' v on r, these tractions being unique on r like p;
"t"(x, t), as the elastic stress response to the plastic strains that arise in Vp in the steady
cycle, can also be identified as the elastic response to the tractions tl~~ = "t". v acting
upon r.
As a consequence, one can affirm that there certainly exists, in the isolated body V., a

time-independent self-stress field, r(x), and a time-independent stress-like internal variable
field, b(x), such that the yield condition is violated nowhere, i.e. by eqns (56)-(60),

(61)

Then, according to the Bleich-Melan theorem generalized to nonlinear hardening (see
Halphen, 1979; Maier, 1987; Polizzotto et al., 1991), the above circumstance is sufficient
for stating that elastic shakedown occurs in V•.

lt immediately follows that, as in perfect plasticity, plastic shakedown in V persists as
long as the body V. has the capacity to shake down in the elastic regime under the action
of additional mechanical loads opo, and that the exhaustion of this capacity marks the
transition from plastic shakedown to ratchetting. However, this point is not pursued here
due to lack of space.

9. COMMENTS AND CONCLUSIONS

For a class of elastic-plastic hardening materials (generalized standard materials), the
existence ofa steady cycle response in a continuous structure subjected to given cyclic loads
has been proven and discussed. Also, an equation set useful for the direct determination of
such a response has been provided, and the characters of the steady cycle studied. Basically,
in the steady state of the structure, the stresses tI and the internal variables I and ~, as well
as the plastic strain rates aP, turn out to be periodic with the same period of the applied
loads. Furthermore, the sensitivity of the steady cycle to the load parameters (namely, the
periodic load multiplier and permanent loads) has been studied showing that, as for perfectly
plastic materials, the following properties hold true.

(1) At plastic shakedown, the body finds itself split into two regions, V = Vp U Ve,

where Vp is the region of alternating plastic strains and V. is the elastic region where a
partial elastic shakedown condition is established.
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(2) On applying upon V (small) increments of permanent loads-but the increments
of the mechanical loads upon Ve-the plastic shakedown steady cycle response turns out
to be insensitive to these load increments, in the sense that the state variables (1, )C, , and
the evolution variables ilP, Xand ~ remain unaltered in Vp , together with Vp itself, whereas
some additional stresses arise in Ve, equilibrating the mechanical load increment.

(3) The transition from plastic shakedown to ratchetting is marked by a state of the
body in which the elastic region Ve-viewed as an isolated body after the removal of Vp­

exhausts its capacity of shaking down in the elastic regime under the action of additional
permanent mechanical loads.

Though the above results hold under the simplifying hypotheses ofsmall displacements
and strains and of constitutive equations independent of temperature variations, they are
of interest for structural design purposes, in particular within nuclear energy production
plant applications. In the author's opinion, it is quite interesting to realize that concepts
and methods already envisaged for perfectly plastic material models also hold good in the
present, more realistic nonlinear hardening material models. The present 4'aper is mainly
concerned with the theoretical aspects of the steady cycle response problem; it provides a
firm basis for further studies devoted to topics such as the following:

(a) The direct determination ofthe boundary between the plastic shakedown zone and
the ratchetting zone-for perfectly plastic materials and for hardening materials with
saturation-with procedures like those given by Ponter (1983), Ponter and Karadeniz
(1985a, b), Ponter et al. (1990), and Polizzotto (1993a, b).

(b) The direct determination of the post-transient residual stresses-for non­
isotropically hardening materials-by suitably extending to the present nonlinear hardening
case the so-called Minimum Total Plastic Over-Potential Principle established by Polizzotto
(l993b, c) for perfectly plastic materials.

(c) Formulation of criteria to predict the type of steady cycle produced by a given
cyclic load, like the plastic shakedown theorems given by Polizzotto (l993b) for perfect
plasticity.
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